翻訳と辞書
Words near each other
・ Cerevisterol
・ Cereza
・ Cerezal de Peñahorcada
・ Cerezo (disambiguation)
・ Cerezo de Abajo
・ Cerezo de Arriba
・ Cerezo de Río Tirón
・ Cerezo Fung a Wing
・ Cerezo Osaka
・ Cerezo Osaka Sakai Ladies
・ Cerezo, Cáceres
・ Cereșeg River
・ Cerf
・ Cerf (surname)
・ Cerf Island
Cerf theory
・ Cerfbeer
・ CERFnet
・ Cerfontaine
・ Cerfontaine Airport
・ Cerfontaine, Belgium
・ Cerfontaine, Nord
・ Cerge Remonde
・ CERGE-EI
・ Cerghid River
・ Cergnago
・ Cergowa
・ Cergy
・ Cergy-Pontoise
・ Cergy-Pontoise University


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cerf theory : ウィキペディア英語版
Cerf theory
In mathematics, at the junction of singularity theory and differential topology, Cerf theory is the study of families of smooth real-valued functions
:f:M \to \mathbb R
on a smooth manifold ''M'', their generic singularities and the topology of the subspaces these singularities define, as subspaces of the function space.
== An example ==

Marston Morse proved that, provided M is compact, any smooth function
:f:M \to \Bbb R
could be approximated by a Morse function. So for many purposes, one can replace arbitrary functions on M by Morse functions.
As a next step, one could ask, 'if you have a 1-parameter family of functions which start and end at Morse functions, can you assume the whole family is Morse?' In general the answer is no. Consider, for example, the family:
:f_t(x)=(1/3)x^3-tx,\,
as a 1-parameter family of functions on M=\mathbb R.
At time
:t=-1\,
it has no critical points, but at time
:t=1\,
it is a Morse function with two critical points
:x=\pm 1.\,
Jean Cerf〔(French mathematician, born 1928 )〕 showed that a 1-parameter family of functions between two Morse functions could be approximated by one that is Morse at all but finitely many degenerate times. The degeneracies involve a birth/death transition of critical points, as in the above example when t=0 an index 0 and index 1 critical point are created (as t increases).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cerf theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.